CURRICULUM VITAE

NOPPAWAN NOUNJAN, Ph.D.

EDUCATION

÷

Ph.D. in Biology 2016 | Khon Kaen University, Thailand
M.Sc. in Biology 2011 | Khon Kaen University, Thailand
B.Sc. in Microbiology 2007 | Khon Kaen University, Thailand

AREAS OF EXPERTISE

Bio-agricultural Science, Environmental Plant Physiology, Plant Molecular Biology

AWARDS & SCHOLARSHIPS

• Fellowship in Post-doctoral Training program, Research Affairs and Graduate School, Khon Kaen University (2016-2019)

• Ph.D. scholarship recipient from the Royal Golden Jubilee (RGJ) Ph.D. Program, Thailand Research Fund (2013 – 2016)

• Young Scientist Travel Grant award from 14th International Symposium on Rice Functional Genomics (ISRFG2016) for oral presentation at Le Corum, Montpellier, France

- Best M.Sc. thesis award 2013 from Graduate School, Khon Kaen University
- Recipient of KKU Graduate School Scholarship for Research Overseas (2010)
- Recipient of TRF Master Research Grant from Thailand Research Fund (TRF)

• Partial Scholarship from Genomics and Proteomics Research Group for Improvement of Salt-tolerant Rice, Khon Kaen University for M.Sc. study

WORK AND RESEARCH EXPERIENCE

2021 – Present	Lecturer
	International College, Khon Kaen University, Thailand
2016 – 2020	Post-doctoral researcher
	Salt-tolerant Rice Research Group, Faculty of Science,
	Khon Kaen University, Thailand
2014 – 2015	Visiting graduate student
	Faculty of Veterinary & Agricultural Science,
	The University of Melbourne, Australia
2012	Visiting graduate student
	Rice Gene Discovery Laboratory, National center for Genetic Engineering
	and Biotechnology (BIOTEC), NSTDA, Kasetsart University,
	Kamphaeng Saen Campus, Thailand

2010	Visiting graduate student
	Key Laboratory of Enzyme and Protein Technology,
	Faculty of Biology, Hanoi University of Science, Hanoi, Vietnam
2007 - 2008	Research Associate
	Genomics and Proteomics Research Group for Improvement of Salt-tolerant Rice,
	Faculty of Science, Khon Kaen University, Thailand
2005	Internship
	Microbial Engineering Laboratory, National center for Genetic Engineering and
	Biotechnology (BIOTEC), Thailand

RESEARCH PROJECTS CARRIED OUT DURING THE PAST 3 YEARS

Exploring salt tolerance mechanisms in plants at molecular levels:

• Investigation on biochemical and molecular pathways involved in enhancing rice seed metabolism during germination under salt stress

- Study on salt tolerance mechanisms between commercial and landrace rice genotypes
- Identification of specific biological process(es) for salt tolerance in CSSL rice population
- Exploring molecular markers for identifying KDML105 rice from PT1 rice

Application of natural products and chemical compounds to enhance stress tolerance:

• Study on mechanisms of plant growth regulator (polyamine) and wood vinegar in promoting seed germination under salt stress

• Identification of chemical compounds in wood vinegar using GC/MS technique

PUBLICATIONS

296 Citations by 274 documents h-index: 5

Publications:

r i i

• Nounjan N, Kam-onsa N, Theerakulpisut P. 2021. Spermidine priming promotes germination of deteriorated seeds and reduced salt stressed damage in rice seedlings. Not. Bot. Horti Agrobo. 49: 12130.

• Theerakulpisut P. Madee P, PamutaD, **Nounjan N**, 2021. Exogenous application of spermidine and wood vinegar improves salt tolerance in salt-sensitive rice (*Oryza sativa* L.). Pak. J. Bot. 53(1): DOI: http://dx.doi.org/10.30848/PJB2021-1(42)

• Nounjan N, Mahakham W, Siangliw J L., Toojinda T, Theerakulpisut P. 2020. Chlorophyll retention and high photosynthetic performance contribute to salinity tolerance in rice carrying drought tolerance QTL. Agriculture 10: 620. https://doi.org/10.3390/agriculture10120620

• Nounjan N, Chansongkrow P, Charoensawan V, Siangliw J L, Toojinda T, Chadchawan S, Theerakulpisut P. 2018. High performance of photosynthesis and osmotic adjustment are associated with salt tolerance ability in rice carrying drought tolerance QTL: physiological and co-expression network analysis. Front. Plant Sci. 9: 1135.

• Larkunthod P, **Nounjan N**, Siangliw J L, Toojinda T, Sanitchon J, Jongdee B, Theerakulpisut P. 2018. Physiological responses under drought stress of improved drought-tolerant rice lines and their parents. Not. Bot. Horti Agrobo. 46: 679–687.

• Nounjan N, Siangliw J L, Toojinda T, Chadchawan S, Theerakulpisut P. 2016. Saltresponsive mechanisms in chromosome segment substitution lines of rice (*Oryza sativa* L. cv. *KDML105*). Plant Physiol. Biochem. 103: 96–105.

• Nounjan N, Nghia P T, Theerakulpisut P. 2012. Exogenous proline and trehalose promote recovery of rice seedlings from salt-stress and differentially modulate antioxidant enzymes and expression of related genes. J. Plant Physiol. 169: 596–604.*

This research was a top cited article during the period of 2012-2016 published in Journal of Plant Physiology

• Nounjan N, Theerakulpisut P. 2012. Effects of exogenous proline and trehalose on physiological responses in rice seedlings during salt-stress and after recovery. Plant, Soil Environ. 58: 309–315.

Selected presentations:

• Mahakham W, Sukseeta N, Jenjan W, Haputon K, **Nounjan N**, Nozaki H. Establishment of culture collection of volvocean algae from Northeast Thailand for biodiversity research, with note on their DNA barcode sequences. In: Proceeding of 5th International *Volvox* Conference, 26-29 July, 2019. The University of Tokyo, Tokyo, Japan

• Nounjan N, Siangliw J L, Toojinda T, Chadchawan S, Theerakulpisut P. Regulation of cyclic electron flow, water use efficiency and sugar accumulation are associated with salt tolerance ability in CSSL of rice cv. *KDML105*. In: Proceeding of the 14th International Symposium on Rice Functional Genomics (ISRFG2016), 26–29 September, 2016. Montpellier, France.

• Nounjan N, Siangliw J L, Toojinda T, Chadchawan S, Theerakulpisut P. Screening of KDML105 chromosome segment substitution lines harboring drought tolerance QTL8 (CSSL KDML105 DT-QTL8) for salt tolerance. In: Proceeding of the 4th International Rice Congress (IRC 2014), 27 October–1 November, 2014. Bangkok, Thailand.

• Nounjan N, Theerakulpisut P. Effects of exogenous proline and trehalose on growth and proline accumulation in salt stressed rice seedlings. In: Proceeding of International Rice Congress on "International Rice Research Conference (IRRC28)", 8–12 November 2010. p. 64. Hanoi, Vietnam.